Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M. N. Johnson* and N. Feeder

Pfizer Ltd, IPC 049, Ramsgate Road, Sandwich, Kent CT13 9NJ, England

Correspondence e-mail: matthew johnson@sandwich.pfizer.com

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.076 Data-to-parameter ratio = 7.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

(R)-Histidinium (2R,3R)-tartrate

The crystal structure of (*R*)-histidinium (2R,3R)-tartrate, $C_6H_{10}N_3O_2^+ \cdot C_4H_5O_6^-$, has been determined as part of an ongoing study into the fundamental effects of chirality on salt formation and hydration. Repeating layers of (*R*)-histidinium and (2R,3R)-tartrate interlink to form a three-dimensional network through simple translational symmetry of the unit cell.

Comment

This study was undertaken to identify the effects of chirality on the formation of salts, specifically the way chirality may affect hydration, as a result of interactions between a chiral drug and a chiral counterion. The absolute configuration can be considered determined as the chiral properties of the starting materials are well characterized. (*R*)-Histidine and (2R,3R)-tartaric acid samples were purchased from Fluka and used in the crystallization. The asymmetric unit and unit cell contain one histidine as a monocation (protonated at the amine and imidazole ring N atoms and deprotonated at the carboxylic acid group), and one tartrate as a monoanion (see scheme below and Fig. 1).

The (R)-histidinium layer is formed by chains of linked histidinium cations hydrogen bonded from the imidazole ring (N2) to carboxyl oxygen (O1). The two-dimensional layer is created by a hydrogen bond from N3 (ammonium group) to the adjacent (R)-histidinium carboxyl group (O2). The (2R,3R)-tartrate anions also form chains, with each link created by hydrogen bonding between the carboxyl OH (O3) group to an oxygen (O8) of the carboxylate group (Fig. 2). The (2R,3R)-tartrate two-dimensional layer is maintained by a single hydrogen bond from a hydroxyl group (O6) to a neighbouring carboxyl oxygen (O7). The three-dimensional crystal structure is formed of repeating layers of (R)histidinium and (2R,3R)-tartrate ions, as shown in Fig. 2. The (R)-histidinium layer is linked to one (2R,3R)-tartrate layer through two hydrogen bonds from the ammonium group (N3) to O7 (carboxylate). The next layer of tartrates is hydrogen bonded to the imidazole ring (N1-H1...O5) and the carboxylate atom O1. Atom O1 is bifurcated, maintaining both the histidine chains and the tartrate/histidine interaction with O5.

Received 23 July 2004 Accepted 29 July 2004 Online 7 August 2004

Experimental

A saturated aqueous solution (5 ml) of (R)-histidine was mixed with a saturated aqueous solution (5 ml) of (2R,3R)-tartartic acid and the vial was covered with a pierced film. This was placed in a larger glass vial containing methanol (25 ml), sealed and allowed to stand for three weeks at room temperature. Crystals of a suitable size for use for single-crystal X-ray diffraction analysis were removed and mounted on glass fibres.

Crystal data

$C_{c}H_{10}N_{2}O_{2}^{+}\cdot C_{c}H_{c}O_{c}^{-}$	$\mathbf{Z} = 1$		
$M_{\rm r} = 305.25$	$D_{\rm r} = 1.602 {\rm Mg m}^{-3}$		
Triclinic, P1	Mo $K\alpha$ radiation		
a = 5.3712 (18) Å Cell parameters from			
b = 7.637 (3) Å	reflections		
c = 8.460 (3) Å	$\theta = 2.6 - 28.1^{\circ}$		
$\alpha = 72.025 (5)^{\circ}$	$\mu = 0.14 \text{ mm}^{-1}$		
$\beta = 73.872(5)^{\circ}$	T = 291 (2) K		
$\gamma = 81.144 \ (5)^{\circ}$	Tablet, colourless		
V = 316.2 (2) Å ³	$0.5 \times 0.3 \times 0.1 \text{ mm}$		
Data collection			
Bruker SMART APEX CCD	1407 independent reflections		

DIUKEI SWIART AI LA CCD
diffractometer
Thin-slice ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\min} = 0.802, T_{\max} = 0.990$
2658 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0511P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	+ 0.0492P]
$wR(F^2) = 0.076$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
1407 reflections	$\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-3}$
194 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

1382 reflections with $I > 2\sigma(I)$

 $\begin{aligned} R_{\rm int} &= 0.011\\ \theta_{\rm max} &= 28.4^\circ\\ h &= -6 \rightarrow 7\\ k &= -10 \rightarrow 10\\ l &= -11 \rightarrow 11 \end{aligned}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O8 ⁱ	0.86	1.90	2.760 (2)	173
$N1 - H1 \cdots O5^{i}$	0.86	2.55	2.993 (3)	113
$N2-H2A\cdotsO1^{ii}$	0.86	2.09	2.810 (3)	142
$N2-H2A\cdots O6^{ii}$	0.86	2.47	2.961 (3)	117
N3-H3A···O7 ⁱⁱⁱ	0.89	1.91	2.799 (2)	176
$N3-H3C\cdots O2^{iv}$	0.89	1.96	2.822 (3)	162
$O5-H500\cdotsO1^{v}$	0.82	1.95	2.741 (3)	163
$O6-H600\cdots O7^{iv}$	0.82	2.08	2.744 (2)	138
$O3\!-\!H300\!\cdots\!O8^{ii}$	0.82	1.72	2.533 (2)	172

Symmetry codes: (i) x - 1, 1 + y, 1 + z; (ii) x, 1 + y, z; (iii) 1 + x, 1 + y, z; (iv) 1 + x, y, z; (v) x, y, z - 1.

All H atoms were positioned geometrically (N–H = 0.86–0.89, O–H = 0.82 and C–H = 0.93–0.98 Å) and refined using a riding model, with $U_{\rm iso}(\rm H)$ = 1.2 or 1.5 times $U_{\rm eq}(\rm N)$, $1.5U_{\rm eq}(\rm O)$ and $1.2U_{\rm eq}(\rm C)$. In the absence of significant anomalous dispersion effects Friedel pairs were merged prior to refinement.

Figure 1

View of the title compound, with atomic displacement ellipsoids drawn at the 50% probability level.

Figure 2

Hydrogen-bonding (dashed lines) motifs in the (R)-histidinium (blue) and (2R,3R)-tartrate (green) ions of (I).

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Sheldrick, 1996) and *Materials Studio* (Accelrys, 2001); software used to prepare material for publication: *SHELXL*97.

References

Accelrys (2001). *Materials Studio*. Accelrys Ltd, 334 Cambridge Science Park, Cambridge CB4 0WN, England.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Bruker (2002). SAINT (Version 6.02) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.